
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2008-03-18

Improving Liquid State Machines Through Iterative Refinement of Improving Liquid State Machines Through Iterative Refinement of

the Reservoir the Reservoir

R David Norton
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Norton, R David, "Improving Liquid State Machines Through Iterative Refinement of the Reservoir" (2008).
Theses and Dissertations. 1354.
https://scholarsarchive.byu.edu/etd/1354

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1354?utm_source=scholarsarchive.byu.edu%2Fetd%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

IMPROVING LIQUID STATE MACHINES THROUGH

ITERATIVE REFINEMENT OF THE RESERVOIR

by

R. David Norton

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

April 2008

www.manaraa.com

Copyright c© 2008 R. David Norton

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

R. David Norton

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Dan Ventura, Chair

Date Michael A. Goodrich

Date Charles Knutson

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of R. David
Norton in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Dan Ventura
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

www.manaraa.com

ABSTRACT

IMPROVING LIQUID STATE MACHINES THROUGH

ITERATIVE REFINEMENT OF THE RESERVOIR

R. David Norton

Department of Computer Science

Master of Science

Liquid State Machines (LSMs) exploit the power of recurrent spiking neural

networks (SNNs) without training the SNN. Instead, a reservoir, or liquid, is randomly

created which acts as a filter for a readout function. We develop three methods for

iteratively refining a randomly generated liquid to create a more effective one. First,

we apply Hebbian learning to LSMs by building the liquid with spike-time dependant

plasticity (STDP) synapses. Second, we create an eligibility based reinforcement

learning algorithm for synaptic development. Third, we apply principles of Hebbian

learning and reinforcement learning to create a new algorithm called separation driven

synaptic modification (SDSM). These three methods are compared across four artifi-

cial pattern recognition problems, generating only fifty liquids for each problem. Each

of these algorithms shows overall improvements to LSMs with SDSM demonstrating

the greatest improvement. SDSM is also shown to generalize well and outperforms

traditional LSMs when presented with speech data obtained from the TIMIT dataset.

www.manaraa.com

Contents

1 Introduction 1

1.1 Neural Networks . 1

1.2 Liquid State Machines . 2

1.3 Thesis Description . 4

1.4 Thesis Overview . 4

2 Separation 7

2.1 An Improved Separation Metric . 8

2.2 A Time-dependent Version of Separation 8

2.3 Validation of Separation Metric . 10

3 Hebbian Learning 13

3.1 Pathological Synchrony and Over-Stratification 13

3.2 Effects of Random Input on Separation 14

3.2.1 Methods . 15

3.2.2 Results . 16

3.2.3 Discussion . 17

3.3 Effects of Spoken Digit Input on Separation 20

3.3.1 Methods . 20

3.3.2 Results . 21

3.3.3 Discussion . 22

vi

www.manaraa.com

4 Reinforcement Learning 25

4.1 Algorithm . 25

4.2 Results . 27

4.3 Discussion . 29

5 Separation Driven Synaptic Modification 31

6 Applying SDSM 37

6.1 Definition of Artificial Problems . 37

6.2 Parameter Settings . 38

6.3 Empirical Results . 40

6.4 SDSM Generalization on Artificial Problems 45

7 A Comparison of SDSM, RLSMs, and HLSMs 51

7.1 Parameter Settings . 51

7.2 Results . 52

7.3 Discussion . 53

8 TIMIT Classification with SDSM 57

8.1 TIMIT . 57

8.2 Results . 59

8.3 Discussion . 59

9 Conclusions and Future Work 63

A Comparison of Liquid Creation Methods 67

B Generalization of Liquids 69

C TIMIT Results with SDSM 73

vii

www.manaraa.com

List of Figures

1.1 Diagram of a liquid state machine . 3

2.1 Correlation between accuracy and separation 11

3.1 Pathological behavior of liquids . 14

3.2 Separation values for experiments given random input 17

3.3 Structure of a liquid before and after Hebbian learning 18

3.4 Spiking patterns in liquids trained with Hebbian learning 19

3.5 Spiking patterns in liquids trained with random weight updates . . . 20

3.6 Separation after training on TIDIGIT with Hebbian learning. 22

3.7 Liquid after training on TIDIGIT with Hebbian learning 23

4.1 Reinforcement learning’s effect on separation 28

4.2 Reinforcement learning’s effect on accuracy 29

4.3 Reinforcement learning’s effect on accuracy continued 30

6.1 Example of pattern recognition problem 39

6.2 Mean results of LSMs after SDSM shaping 41

6.3 Maximum results of LSMs after SDSM shaping 42

6.4 Accuracy Trend for Liquid Creation 43

6.5 Separation history in a typical trial of SDSM 44

6.6 Separation history for each problem type under SDSM 45

6.7 Mean ability of liquids to generalize 46

viii

www.manaraa.com

6.8 Maximum ability of liquids to generalize 47

6.9 Mean ability of traditional liquids to generalize 48

6.10 Maximum ability of traditional liquids to generalize 49

7.1 Mean results of various LSMs . 52

7.2 Maximum results of various LSMs . 53

7.3 Separation history in a typical trial from a HLSM 54

7.4 Separation history of HLSMs for each problem type 55

7.5 Separation history in a typical trial from a RLSM 56

7.6 Separation history of RLSMs for each problem type 56

8.1 Mean results of SDSM run on TIMIT data 59

8.2 Maximum results of SDSM run on TIMIT data 60

ix

www.manaraa.com

Chapter 1

Introduction

1.1 Neural Networks

Artificial neural networks (ANNs) are a biologically inspired model for compu-

tation derived from the architecture of the living nervous system. However, as with

all models, traditional ANNs are an abstraction of the actual system they model.

Despite this high level of abstraction, ANNs have shown significant computational

potential and have undergone many refinements in an attempt to mimic the com-

putational power that is noticeably present in biological systems. Spiking neural

networks, or SNNs, are one refinement of the model that more closely models the

biological counterpart.

The spiking neurons that make up SNNs emulate biological neurons by trans-

mitting signals in a sequence of spikes with each spike having a constant amplitude.

Information is encoded in the varying frequencies of spikes produced by the neurons

rather than in the single rate value commonly used in non-spiking networks [8]. SNNs

can convey temporal information more accurately by maintaining non-uniform spik-

ing frequencies. This allows SNNs to have greater computational power for problems

in which timing is important [1] [15], including such problems as speech recognition,

biometrics, and robot control. Even in problems where timing isn’t an explicit factor,

SNNs achieve competitive results with fewer neurons than traditional ANNs [2] [3].

1

www.manaraa.com

Aside from SNNs, another refinement of neural networks that more closely

models biological systems is the incorporation of recurrence, defined as allowing cycles

to occur within the network. This property theoretically improves ANNs by allowing

neural activity at one point in time to effect neural activity at a later time. In

other words, context is incorporated directly into the network, endowing the network

with the capability for solving timing-critical problems. SNNs are often created with

recurrence as a default attribute.

Despite the obvious advantages of these two types of neural networks, both

suffer from a distinct lack of satisfactory training algorithms. Concerning the recur-

rent networks alone, only a handful of established algorithms exist, all of which have

very high computational costs, limiting them to very small networks [12]. All of these

methods also require very specific and sensitive parameter settings for each applica-

tion in which they are used. Training SNNs is also a developing area of research.

Most SNN training algorithms currently proposed only allow for a single output spike

from each neuron [2] [3] [17]. This is unrealistic and computationally limiting.

1.2 Liquid State Machines

One approach for harnessing the power of recurrent SNNs without actually

training them is called the liquid state machine, or LSM [18] [19]. LSMs are a type of

reservoir computing comparable to echo state networks (ESN) and Backpropagation

Decorrelation (BPDC) [22], neither of which employs spiking neurons. LSMs are

composed of two parts: a reservoir featuring a highly recurrent SNN, and a readout

function characterized by a simple learning function. Input is fed into the reservoir

which acts as a filter. Then the state of the reservoir, or state vector, is used as input

for the readout function. In essence, the readout function trains on the output of

the reservoir. No training occurs within the reservoir itself. This process has been

analogized with dropping objects into a container of liquid and subsequently reading

2

www.manaraa.com

Figure 1.1: Diagram of a liquid state machine. (a, b) The input signal is transformed
into a series of spikes via some function. (c) The spike train is introduced into the
recurrent SNN, or “liquid”. (d) Snapshots of the state of the “liquid” are recorded in
state vectors. (e) The state vectors are used as input to train a learning algorithm,
the readout function.

the ripples created to classify the objects—hence the name liquid state machine. See

Figure 1.1.

Because no training occurs in the reservoir, the quality of the LSM is depen-

dent upon the ability of the liquid to effectively separate classes of input. Here the

term “effectively separate” is defined as the ability of a liquid to yield a state vector

with which a readout function can attain acceptable accuracy. Typically, the liquid

is created randomly according to some carefully selected parameters specific to the

problem at hand. This parameter selection has been the topic of much research [9]

[22] although the research has not yet led to a consistent and general method of

generating liquids for all problems [23]. Even when adequate parameters for a given

problem have been implemented, the creation of a useful liquid is not guaranteed.

Typically hundreds or even thousands of liquids will be created to find a suitable

filter. Fortunately, once such a liquid is discovered, the results of the LSM are com-

parable with the state-of-the-art [11] [22] [24]. Such results, coupled with the lack of

3

www.manaraa.com

a sufficient training algorithm to train these latent networks, fuel the exploration of

LSMs.

1.3 Thesis Description

It is clear that a general method for creating effective liquids in an LSM without

having to rely on the generation of many random liquids would be useful. In this

thesis we approach this problem by randomly creating a liquid in the traditional

fashion and then adjusting the liquid’s architecture until it can “effectively separate”

as defined above. We present the liquid with sample data, observe the resulting

behavior, and then use these observations to make the necessary changes to the

liquid. This observation of behavior may focus on individual neurons or be more

general depending on the specific algorithm we are using. Although this approach

essentially involves using training data to modify the liquid, it is not a standard

training algorithm in that the goal of our method is different. The goal is to create

a liquid that will effectively separate classes of input into different patterns of state

vectors. Afterwards, the readout function will learn to extract information from the

state vectors via training.

1.4 Thesis Overview

We begin in Chapter 2 by defining a separation metric to evaluate how well

a liquid can “effectively separate” classes of input. This separation metric will be

used throughout the rest of the thesis. In the next three chapters we introduce

three algorithms for iteratively refining the reservoir of a liquid state machine. In

Chapter 3 we introduce Hebbian learning to LSMs, an unsupervised approach that

applies changeable synapses to the liquid. We also show the results of using both

random noise and speech data as input into such a liquid. The contents of this

4

www.manaraa.com

chapter were published in the 2006 proceedings of IJCNN. Chapter 4 describes a new

type of reinforcement algorithm that can be used in conjunction with LSMs and shows

the results of preliminary experiments involving simple problems. In Chapter 5 we

define a new algorithm called separation driven synaptic modification (SDSM) that

is inspired by Hebbian and reinforcement learning. Chapter 6 shows the results of

applying SDSM to several artificial problems. This chapter also explores the ability

of liquids created with SDSM to generalize to a variety of problems. In Chapter 7 we

compare all three of our algorithms across the artificial problems outlined in Chapter 6

and find that all perform better than traditional LSMs. In Chapter 8 we explore

SDSM further by testing it with real world speech data from the TIMIT dataset.

Finally, we summarize our conclusions and recommend future work in Chapter 9.

All of the LSMs used in this thesis are created using CSIM, “a tool for simulating

heterogeneous networks composed of different model neurons and synapses” [18].

5

www.manaraa.com

6

www.manaraa.com

Chapter 2

Separation

Separation is a metric used to determine the effectiveness of a liquid. It essen-

tially measures how well the liquid separates different classes of input into different

reservoir states, or state vectors, and is analogous to supervised clustering. A metric

for separation was first devised by Goodman [11] and is inspired by the description

of the properties of a liquid presented by Maass [16]. Goodman’s separation metric

is shown in Equation 2.1.

SepΨ(O) =
N∑

m=1

N∑
n=1

‖µ(Om)− µ(On)‖2

N2
(2.1)

Here Ψ is the liquid and O is the set of all state vectors induced by Ψ divided

into subsets, Om, for each class. N is the total number of classes, so O contains N

subsets. µ(Om) is the center of mass for all of the state vectors of class m and is

calculated by Equation 2.2. Goodman’s definition of separation essentially finds the

mean distance between the center of mass for every pair of classes. In the following

equation, on is an individual state vector in the subset Om.

µ(Om) =

∑
on∈Om

on

|Om|
(2.2)

Goodman’s definition of separation is used for all of the experiments with

Hebbian learning in Chapter 3.

7

www.manaraa.com

2.1 An Improved Separation Metric

In order to more accurately perform the desired measure of separation, we

have revised Goodman’s definition to take into consideration the variance in state

vectors. With Goodman’s metric, a liquid could be attributed with high separation

while having great overlap across the different clusters of state vectors, as long as

the centers of mass for these clusters were divergent. This situation is problematic

for the readout function since it becomes difficult to delineate different classes. Our

definition of separation presented in a similar form to Goodman’s (for comparative

purposes) is shown in Equation 2.3.

SepΨ(O) =
N∑

m=1

N∑
n=1

‖µ(Om)− µ(On)‖2

N2 + N
∑N

m=1 ρ(Om)
(2.3)

Here all variables and functions have the same meaning as those in the previous

definition. The additional function ρ(Om) is the amount of variance within a class

of state vectors and is calculated by Equation 2.4. Our separation metric essentially

finds the mean distance between the center of mass for every pair of classes, and then

divides it by a function of the class variances. This decreases the separation value

for liquids that yield overlapping clusters of state vectors, thus presenting a more

accurate representation of separability in terms of the readout function.

ρ(Om) =

∑
on∈Om

‖µ(Om)− on‖2

|Om|
(2.4)

2.2 A Time-dependent Version of Separation

The representation in Equation 2.3 allows for a direct comparison to Good-

man’s original separation metric. However, due to the separation-dependent nature of

the SDSM algorithm that will be defined and explored in Chapters 5 and 6, we need

to include time in the above separation metric. This section shows the derivation of

8

www.manaraa.com

a more readable version of our separation metric that includes the variable of time

and new terms that will be necessary in understanding SDSM. For clarification, time

refers to the iteration of a given synapse modifying algorithm.

Separation is calculated with the set of state vectors, O, as described previously

with the added variable of time making it O(t). O(t) is divided into N subsets, Om(t),

one for each class, where N is the total number of classes. The center of mass for each

class, m, can be calculated with Equation 2.5. Equation 2.6 is the average amount of

variance for each state vector within class m from the center of mass for that class.

µ(Om(t)) =

∑
on∈Om(t) on

|Om(t)|
(2.5)

ρ(Om(t)) =

∑
on∈Om(t) ‖µ(Om(t))− on‖2

|Om(t)|
(2.6)

Separation is divided into two parts, the inter-class distance, Cd(t), and the

intra-class variance, Cv(t). Cd(t) is defined by Equation 2.7 and is the mean distance

between every combination of µ(Om(t)). Cv(t) is defined by Equation 2.8 and is the

mean variance of every cluster of state vectors. Separation can now be defined by

Equation 2.9. Cv(t) is incremented by one to ensure that separation never approaches

∞.

Cd(t) =
N∑

m=1

N∑
n=1

‖µ(Om(t))− µ(On(t))‖2

N2
(2.7)

Cv(t) =
1

N

N∑
m=1

ρ(Om(t)) (2.8)

9

www.manaraa.com

SepΨ(O(t)) =
Cd(t)

Cv(t) + 1
(2.9)

Careful examination of Equation 2.9 will reveal that it is identical to Equa-

tion 2.3 for a given iteration t. With the exception of Chapter 3, all references to

separation throughout this thesis refer to Equation 2.9 and not Goodman’s original

metric.

2.3 Validation of Separation Metric

In Figure 2.1 we show that separation as defined in Equation 2.9, does correlate

with the effectiveness of a liquid. Here, effectiveness is measured as the accuracy of

the LSM at classifying inputs in an artificial problem. One thousand liquids were gen-

erated with varying parameter settings to create a large variety of separation values.

The artificial problem consisted of five input classes expressed as spiking patterns

for four input neurons. Separation was calculated with only three examples from

each class. Since we were not applying a synapse modifying algorithm to the liquids,

only one iteration, t, was observed. The correlation coefficient between accuracy and

separation is a convincing 0.6876.

10

www.manaraa.com

Figure 2.1: Correlation between accuracy and separation in 1000 different liquids run
on an artificial problem. The correlation coefficient is 0.6876.

11

www.manaraa.com

12

www.manaraa.com

Chapter 3

Hebbian Learning

Hebbian learning is often implemented in recurrent SNNs with STDP synapses

(spike-time-dependant plasticity synapses). As with other spiking synapses, there is

a weight and time delay associated with the synapse. In addition, the STDP synapse

has several other parameters that are related to how its weight changes as its pre-

and post-synaptic neurons fire [8]. The synapse’s weight changes in proportion to the

temporal correlation between the pre- and post-synaptic neurons. If the pre-synaptic

neuron fires first, then the weight is increased; if the post-synaptic neuron fires first

then the weight is decreased. In this way, synapses that participate in a neuron’s

breach of threshold (resulting in a spike) are strengthened while those that don’t are

weakened. We refer to LSMs that use STDP synapses as a Hebbian Liquid State

Machines (HLSMs). This chapter looks at two experiments with HLSMs to try and

understand how Hebbian learning affects LSMs. The contents of this chapter were

published in the 2006 proceedings of IJCNN [20].

3.1 Pathological Synchrony and Over-Stratification

One observation we will make in the first experiment of this chapter is the effect

of Hebbian learning on liquids exhibiting two negative behaviors that are common to

randomly generated liquids. These behaviors can significantly decrease the separation

of a liquid and are termed pathological synchrony and over-stratification. Pathological

13

www.manaraa.com

(a) Pathological Synchrony (b) Over-stratification

Figure 3.1: Behavior of liquids exhibiting pathologcial synchrony and over-
stratification. The x-axis shows the passage of time while the y-axis shows the 135
neurons making up these liquids. Dots indicate occurrence of a spike for a given
neuron.

synchrony occurs when most of the neurons in the liquid get caught in infinite positive

feedback loops with respect to their firing. These infinite loops continuously influence

the state of the liquid overriding the flow of information from the input. In extreme

cases the entire liquid can begin firing continuously in synchrony as in Figure 3.1(a).

Such liquids have low separation because of the loss of pattern associated with such

crowded spiking. Over-stratification occurs when groups of neurons do not propagate

a series of spikes induced by an input spike long enough. In these cases, input spikes

do not influence each other within the liquid, thus resulting in a loss of temporal

coherency that can be represented by the liquid as in Figure 3.1(b).

3.2 Effects of Random Input on Separation

The first experiment in this chapter explores the effect of a single channel of

random input on HLSM separation in order to better understand the dynamics of the

HLSM architecture. Two initial liquid states were investigated, a state in pathological

synchrony and an over-stratification state. These initial states were selected in order

14

www.manaraa.com

to observe how Hebbian Learning could potentially recover from them. For both

initial states, actual Hebbian learning and random weight updates were compared

resulting in a total of four sub-experiments.

3.2.1 Methods

Each of the four sub-experiments employed 100 iterations of training on the

liquid. This training was either Hebbian learning or random weight alterations. For

each iteration of training the separation of the liquid was determined with a set of

state vectors, O, of size 100. Each state vector in O was created by introducing a

randomly generated train of 25 spikes over a 1.0 second time interval, d, as input

into the liquid. The state vector was measured at time d with e = 1.0 ms. Since the

input was random, each state vector belonged to a unique output class. Thus, for

this experiment N = O, where N is the total number of classes in a given problem.

Each liquid was prepared with 135 neurons to be comparable to previous

research [10]. The input was encoded as a spike train from a single input neuron. The

remainder of the settings were chosen based on a series of preliminary experiments and

reflect the best results obtained in those trials. The connection probability from the

input neuron to the other inter-neurons was 0.1 while the probability of connection

between the inter-neurons was 0.05. The mean delay for the synapses of the liquid was

10 ms with a standard deviation of 1 ms. To induce the negative behaviors in initial

liquids, the mean weights of the synapses were adjusted accordingly. For the liquids

initiated in a pathological synchrony state, the mean weight value for synapses was

set at 1×10−7 while the mean weight value in liquids initiated in an over-stratification

state was set at 8 × 10−8. The standard deviation of weight values for both initial

states was 1× 10−8.

For the Hebbian learning, all STDP Synapse settings were selected based on

preliminary experiments. The maximum weight value allowed for all synapses in

15

www.manaraa.com

both Hebbian learning and random weight update experiments was 1 × 10−5. Each

training of the liquid involved introducing a randomly generated train of 25 spikes

over a 1.0 second time interval. During this input interval and in the case of Hebbian

learning, the weights were allowed to change in accordance with the STDP synapse

rules outlined earlier. For random weight updates, each synapse’s weight was updated

at the end of the input interval by a value drawn from a normal distribution with

a mean of −2.8742 × 10−8 and a standard deviation of 1.5726 × 10−7. This mean

and standard deviation were obtained by calculating and averaging the mean and

standard deviation of weight changes in ten preliminary runs through unique liquids

using Hebbian Learning. Thus, the values, though random, represent reasonable

changes in weight for the liquids in this study.

3.2.2 Results

The results of the above experiment are seen in Figure 3.2. For each of the four

experiments, the average separation of ten unique liquids is displayed. The Hebbian

learning trials don’t show a significant change in separation while the random weight

update trials drop steadily in separation after only ten iterations.

Figure 3.3 demonstrates how the physical structure of the liquid changes with

training. The images show how the synapses (lines) connect to each of the neurons

(dots). The brighter the synapse, the stronger the magnitude of the weight. We dont

differentiate between positive and negative weights. Black synapses have effectively

zero weight. When stimulated with random input, Hebbian learning eliminates many

of the synapses while strengthening those that remain. Random weight updates, on

the other hand, results in overall significantly strengthened synapses after random

stimulation.

Figure 3.4 and Figure 3.5 demonstrate how the spiking patterns of each exper-

iment change with training. For each graph, the x-axis represents time in seconds and

16

www.manaraa.com

Figure 3.2: Separation values for four experiments given completely random input.
Separation values are the mean reported by ten trials each with a different initial
liquid. The Hebbian learning trials don’t show a significant change in separation
while the random weight update trials show a steady drop in separation after only
ten iterations.

the y-axis the neuron ID number (there are 135 total). Hebbian learning relieves the

state of pathological synchrony as seen in the reduction of firing (Figure 3.4). It also

overcomes over-stratification by generating denser firing patterns. Random weight

updates results in over-stratification regardless of the initial state (Figure 3.5). This

seems unusual since the synapses are much stronger according to the results in Fig-

ure 3.3. This occurs because most of the synapses become strongly inhibitory due to

the mean negative weight update.

3.2.3 Discussion

This experiment showed that given ideal initial liquids, Hebbian learning can-

not improve separation with random input. However, the experiment also showed

that given poor initial conditions Hebbian learning can improve performance. Fi-

nally, the experiment showed that even under the fabricated random input scenario,

Hebbian learning does more than simply randomly update weights.

17

www.manaraa.com

Figure 3.3: The physical characteristics of the liquid can be seen before and after
training. Bright colors indicate strong weights (either negative or positive), dark
colors indicate weak weights. Top: Hebbian learning eliminates many of the synapses
while strengthening those that remain. Bottom: Random weight updates results in
overall significantly strengthened synapses after random stimulation.

In the experiments initiated in a pathological synchronous state, both random

update and Hebbian learning improved the separation of the liquids dramatically

after only a single iteration of training. In fact, in the initial pathological state, the

separation was zero in all trials. This dramatic improvement can best be explained

by the assumption that arbitrary pruning of synapses reduces the number of infinite

loops in the liquid. This also concurs with previous findings that investigated the

reduction of neuron inter-connections to reduce synchronous firing [11].

Other than the initial improvement in pathological states, Hebbian learning

doesn’t improve the separation of the liquid over successive iterations of training.

Also, the amount of separation at each level of training fluctuates greatly. The overall

lack of improvement is likely due to the fact that the input for the training is entirely

18

www.manaraa.com

Figure 3.4: Spiking patterns in liquids trained with Hebbian learning. Top: The
pathological synchrony state of the liquid is somewhat relieved by Hebbian learningth-
ere are fewer neurons firing continuously and less dense patterns of firing. Bottom:
Over-stratification is clearly relieved by iteration 100 through the Hebbian process.

random—the input is effectively noise. While it is clear that the effectiveness of the

liquid is not lessened by this noise, there is no useful structure in the data.

In the experiments using random weight update training, after the initial in-

crease in separation, we see a steady decline in separation, until it levels off close to

zero. The change in spiking patterns indicates that the patterns become over-stratified

(Figure 3.5) explaining the poor results. The primary benefit of these random weight

update experiments is that through comparison, we can see that Hebbian Learning

performs a role beyond random weight changing, even when confronted with nothing

but noise.

19

www.manaraa.com

Figure 3.5: Spiking patterns in liquids trained with random weight updates. Random
updates to synapse weights results in over-stratification over time regardless of the
initial state of the liquid.

3.3 Effects of Spoken Digit Input on Separation

The second experiment in this chapter explores the effect of Hebbian learning

on the separation of the liquid when exposed to real world data. The input for this

experiment was a selection of 3519 training files from the TIDIGIT dataset [14]. These

files consist of different people speaking single digits: one through nine, and zero and

oh (both for 0).

3.3.1 Methods

To convert the sound files into spike trains, all silence was removed from the

sound files, and they were converted into thirteen Mel frequency cepstral coefficients

(mfcc) as is common in speech applications [5]. The frame size for the Fourier trans-

form was 256 bytes with a frame step of 128 bytes. Thirteen input neurons were

20

www.manaraa.com

used, one for each of the thirteen mfcc’s. The firing rate of each of these neurons was

determined with Equation 3.1 taken from [11].

Ratei(t) =
mfcci(t)

(Ωi − ωi)
·MaxRate (3.1)

Here Ω represents the largest frequency for a given mfcc, ω represents the

smallest frequency, and t is the time interval of a given firing rate, determined by the

frame step.

The separation of the liquid was calculated before and after 1000 iterations of

training on the TIDIGIT training dataset. The training dataset contained 3519 files,

1000 of which were randomly selected to train the liquid. To calculate separation, a

set of state vectors, O, of size 100 was used as in the previous experiment. In this case

each state vector of O was created by introducing one of 3519 randomly selected test

files from the TIDIGIT testing dataset as input into the liquid. This test data was

different from the training data but was prepared for the HLSM in the same fashion.

Each file had a unique time interval, d. The state vector was measured at time d for

each file with ε = 1.0ms. In order to allow for an exhaustive permutation correlation

test, the 100 test samples chosen before and after the training were identical.

3.3.2 Results

This experiment was run ten times on different liquids with the results indi-

cated in Figure 3.6. The average improvement in separation for all ten trials was

0.064 and is statistically significant with a p-value of < 0.001. This p-value was

calculated by finding the average difference in separation for every permutation of

differences for the 10 trials. A single permutation consisted of swapping the order

of the difference calculation (pre-training - post-training rather than post-training -

pre-training) for a single trial. The number of permutations with averages greater

than 0.064 was tabulated and divided by the total number of permutations, 1024, to

21

www.manaraa.com

Figure 3.6: Average separation in liquid before and after training on the TIDIGIT
dataset.

yield the given p-value. Unsupervised Hebbian learning can improve the separation

of the liquid indicating a strong likelihood that the organization of the liquid has

become a more effective component for learning.

3.3.3 Discussion

This experiment showed that Hebbian learning can improve the liquid given

nonrandom input. Figure 3.7 shows how the physical structure of the liquid changes

with non-random input from a speech recognition task. Notably, very little does

change in comparison to the experiments with random input. The noticeable change

is that a few connections are greatly strengthened. These figures were representative

of all ten trials. More interesting was the improvement in separation noted after

Hebbian learning took place, demonstrating that unsupervised learning can improve

separation in complex neural microcircuits. The new question raised is whether or

not the improvement comes at a lower cost than simply creating an effective liquid to

begin with. The effectiveness of the original liquid is a product of all of the parameters

used to create it, including mean weight, probability of inter-neuron connections,

mean delay values, etc. Separation values for the pre-training liquids ranged from

2.09 to 2.70, a much greater difference than the average difference between pre- and

22

www.manaraa.com

(a) Initial Liquid (b) Liquid After Hebbian Learning

Figure 3.7: (a) shows the network connections of a liquid prior to training with
Hebbian learning. The brighter the color of the connection, the stronger the weight
of the synapse. (b) shows the network connections of a liquid after 1000 iterations of
training on the TIDIGIT dataset using Hebbian learning. Note that there are several
bright connections that were not present prior to training corresponding to synapses
strengthened by Hebbian learning.

post-training separation. Also, the effectiveness of the Hebbian learning is sensitive

to initial parameter settings (with different settings for the parameters used in the

Hebbian learning, the post-training liquids actually resulted in lower separation). It

is unclear whether discovering the ideal settings for Hebbian learning is less difficult

then the effort required discovering the ideal settings for the initial liquid. It is also

uncertain whether Hebbian learning or any other post-parameter setting adjustments

provide a gain in separation that is not available in the parameter-setting stage.

23

www.manaraa.com

24

www.manaraa.com

Chapter 4

Reinforcement Learning

This chapter explores the use of reinforcement learning to change the architec-

ture of the liquid. We refer to LSMs created with reinforcement learning as RLSMs.

The reinforcement algorithm we use is derived from the OLPOMDP reinforcement

learning algorithm [6]. However, since we are not interested in training the liquid

in real-time, we have modified the algorithm with the goal of improving the liquid’s

separation.

4.1 Algorithm

Because we want the liquid to be able to take on any form, we initialize

each neuron with synaptic connections to every other neuron, including the input

neurons. The permanent delay and initial weight for each synapse is set by sampling

from a normal distribution, and the weight can be positive (excitatory) or negative

(inhibitory) with equal probability.

The premise of the reinforcement learning algorithm is to update every

synapse’s weight according to a reward function and an eligibility value attributed to

each synapse:

wij(t + ∆t) = wij(t) + λr(t + ∆t)zij(t + ∆t) (4.1)

Here λ is the learning rate, w and z are respectively the weight and eligibility of the

synapse connecting neuron j to neuron i, and r(t+∆t) is the reward at the new time

25

www.manaraa.com

step. The reward is calculated as a sigmoid function of separation:

r(t + ∆t) =
1

1 + e
γ(

SepΨ(O(t+∆t))

Sep∗
Ψ

)
(4.2)

Here γ is the gain of the sigmoid and Sep∗Ψ is the optimal separation value for the

liquid. We approximate Sep∗Ψ by calculating the separation, using Equation 2.9, for

1000 artificially created sets of state vectors where each set consists of one state vector

per class, and then selecting the highest separation value. Each of these artificial sets

of state vectors is created by generating one state vector at a time that is as different as

possible from all previously generated state vectors. This process is partially random

since multiple possibilities exist for each new state vector.

The eligibility of each synapse is initialized to zero. The eligibility is changed

based on a function of the firing behavior and firing likelihood of the post-synaptic

neuron (Equation 4.4). An increment in eligibility occurs when the post-synaptic

neuron fires at time step t and is proportional to the likelihood that the post-synaptic

neuron will not fire. A decrement in eligibility occurs when the post-synaptic neuron

does not fire at time step t and is proportional to the likelihood that the post-synaptic

neuron will fire. The new eligibility of a synapse is calculated with the following

equation:

zij(t + ∆t) = βzij(t) +
∑

ok∈O

ζij(t, ok)

|O|
(4.3)

where β is a discount factor. As time progresses, the eligibility drops according to

β. ζij(t, ok) is the change in eligibility at time t as a function of each state vector,

ok. |O| is the cardinality of the set of all state vectors collected at t. The summation

in Equation 4.3 averages the change in eligibility for all ok generated to calculate

26

www.manaraa.com

SepΨ(O(t)). A series of equations for calculating ζij follows:

ζij(t, ok) =


1− πi(t), if fi(t, ok) = 1

−πi(t), if fi(t, ok) = 0
(4.4)

πi(t) =
ρi(t)∑

k∈Q ρk(t)
(4.5)

ρi(t) =
∑
j∈Zi

wij −min
j∈Q

∑
k∈Zi

wjk (4.6)

Here πi(t) is the likelihood that neuron i will fire at t and fi(t, ok) is an indica-

tor function that returns 1 if neuron i fires at t and 0 otherwise. ρ is a function used

to simplify the likelihood equation. The likelihood of firing is not a probabilistic cal-

culation but rather an estimate based on the combined weight of incoming synapses.

This estimate is used in the interest of speeding up an already very time consuming

algorithm. Also, the stochastic nature of liquids does not require a precise calculation

of all parameters. In Equations 4.5 and 4.6, Q is the set of all neurons in the liquid.

Finally, Zi is the set of neurons directly upstream of neuron i.

4.2 Results

The first experiments using the reinforcement algorithm applied artificial input

to small liquids. Also, as a simplification reinforcement learning was only applied to

the interconnecting synapses of the liquid and not the synapses connecting input

neurons to the liquid. Our artificial input was a series of spikes occurring at a fixed

frequency and then jittered by uniform random noise. Different classes of input were

defined by different signature frequencies obtained from Equation 4.7, where f is the

frequency in spikes per second, c is the class number, and the value 3.125 is chosen

empirically.

27

www.manaraa.com

Figure 4.1: Average separation in liquids of varying size before and after reinforce-
ment learning with an artificial problem. Data points are an average of ninety trials
spanning problems with two through ten classes (ten trials of each class). Optimal
separation included for comparison.

f = 3.125× 2c (4.7)

Since each class’ signature frequency is at least a power of two different from

any other class, the classes are highly differentiated (up to a certain number of classes

when the frequency becomes so high that the liquid can’t make distinctions). With

this simple artificial problem on small networks, we are able to see how the reinforce-

ment algorithm works under controlled circumstances. Figure 4.1 shows the effects

of reinforcement learning on small liquids of varying numbers of neurons. Each point

represents the mean separation (over ten trials) of problems with varying numbers of

classes. The values labeled as “initial” are the separation of the liquid before rein-

forcement learning has occurred, while the values labeled as “reinforcement” are the

maximum separation obtained out of 500 iterations of reinforcement learning. Finally,

the values labeled as “optimal” are the average (over number of classes) maximum

separation that a liquid of a given number of neurons can have.

Figure 4.2 looks at how the number of neurons affects the accuracy of the

readout for binary classification. As in Figure 4.1, it shows the accuracy of an LSM

28

www.manaraa.com

Figure 4.2: Average accuracy in liquids of varying size before and after reinforcement
learning with an artificial problem of only two classes. Data points are an average of
ten trials.

before and after the liquid has been modified with reinforcement learning. The ”re-

inforcement” label refers to the liquid with the highest separation obtained from the

training period. The accuracy indicates the average accuracy of a readout function

consisting of two perceptrons (one for each class) trained with state vectors obtained

from the liquid and is an average of ten experimental trials. The x -axis indicates the

number of neurons in the liquid.

Figure 4.3 also shows the effect of reinforcement learning on accuracy but

explores the number of classes in the problems presented to the algorithm rather than

the number of neurons. Here the accuracy indicates the average accuracy of a readout

function composed of n perceptrons (where n is the number of classes) trained with

state vectors obtained from the liquid and is an average of ten experimental trials.

The x -axis indicates the number of classes used for each trial. A liquid of ten neurons

was used for each trial.

4.3 Discussion

It is clear from Figure 4.1 that reinforcement learning improves the separation

property of the liquid in the given problem. The fact that separation is positively

29

www.manaraa.com

Figure 4.3: Average accuracy of readout in liquids for problems with varying numbers
of classes before and after reinforcement learning with an artificial problem. Data
points are an average of ten trials each with a liquid of ten neurons

correlated with the number of neurons in the liquid is not surprising—as the number

of neurons increases the maximum difference between two or more state vectors also

increases as indicated by the optimal separation line. However, this improvement in

separation does not carry over to an appreciable improvement in accuracy as demon-

strated by Figures 4.2 and 4.3. While this causes us to question the effectiveness of

our separation metric, it may be that the problem is too simple to demonstrate an ac-

curate correlation between separation and accuracy. The results of Chapter 2 clearly

illustrate that a correlation between accuracy and separation does exist. Despite the

marginal increase in accuracy afforded by RLSMs, the fact that there is an overall

increase at all reveals potential for RLSMs. Unfortunately, the creation of RLSMs

is much slower than even HLSMs. This has discouraged further investigation of the

algorithm. In chapter 5 we will introduce an algorithm that borrows principals of re-

inforcement learning and shows significant improvement to separation and accuracy

while strengthening their correlation.

30

www.manaraa.com

Chapter 5

Separation Driven Synaptic Modification

Separation Driven Synaptic Modification or SDSM is an approach used to

modify the synapses of the liquid by using the separation metric defined in Chapter 2.

For convenience we will reprint the definition of separation here:

SepΨ(O(t)) =
Cd(t)

Cv(t) + 1
(5.1)

Cd(t) =
N∑

m=1

N∑
n=1

‖µ(Om(t))− µ(On(t))‖2

N2
(5.2)

Cv(t) =
1

N

N∑
m=1

ρ(Om(t)) (5.3)

Recall that Cd(t) is the mean distance between the center of mass for every

pair of classes and is referred to as the inter-class distance. Cv(t) is the mean variance

of each class and is referred to as the intra-class variance.

Now we will look at the actual synaptic modification equation for SDSM in

Equation 5.4.

wij(t + ∆t) = sgn(wij(t))(|wij(t)|+ E(t)λF (t)) (5.4)

Here wij(t) is the weight of the synapse from neuron j to neuron i at time t, λ is

the learning rate, sgn(wij(t)) is the sign of wij(t), E(t) is a function of the effect of

31

www.manaraa.com

separation on the weight at time t, and F (t) is a function of the firing behavior of all

neurons in the liquid at time t.

First we will look at the function E(t). To explain this function and its deriva-

tion it is first important to understand what we mean by relative synaptic strength,

Rs, defined by Equation 5.5.

Rs =
|wij(t)| − µw

Mw

(5.5)

Here µw estimates the expected value of the magnitude of synaptic weights in the

initial liquid. Mw estimates the maximum value of random variables drawn from

the same distribution used to generate synaptic weights in the initial liquid. (These

approximations were obtained via simulation with 10,000 samples). Mw essentially

normalizes the synaptic strength while µw is used to differentiate weak synapses and

strong synapses. A negative Rs is considered weak while a positive Rs is considered

strong.

Too little distance between centers of mass, Cd(t) (Equation 5.2), or too much

variance within classes, Cv(t) (Equation 5.3), can decrease separation and thus the

overall effectiveness of the liquid. Generally speaking, if there is too little distance

between centers of mass, it is because strong synapses are driving the liquid to behave

a particular way regardless of input class. To rectify this, we want to strengthen

weak synapses and weaken strong synapses. This will drive the liquid towards a more

chaotic structure that will yield results more dependent on the input. On the other

hand, if there is too much variance within classes, it is because the liquid is too chaotic

to drive inputs of the same class to behave similarly. To relieve this problem, it is

necessary to strengthen strong synapses and weaken weak synapses even more. This

will polarize the liquid, requiring greater differences in input to cause a change in the

liquid’s behavior (in other words, the liquid will be less chaotic).

32

www.manaraa.com

The motivation behind the function E(t) is balancing these two solutions at the

level of an individual synapse. The first solution, solving the problem of differentiating

classes of input, di, is implemented with Equation 5.6.

di = αi

(
1− Cd

Sep∗Ψ

)
(5.6)

αi =

∑N
k=1 µi(Ok(t))

N
(5.7)

Here αi is the activity of a specific neuron i (the post-synaptic neuron of

synapse wij) and is defined by Equation 5.7. αi contains µ(Ok(t)) which is the mean

of the state vectors in class k. Specifically, µi(Ok(t)) is the value of the ith element of

the mean state vector. This is also the fraction of state vectors belonging to class k in

which neuron i fires. In Equation 5.6, the normalized value of Cd(t) is subtracted from

one so that di will provide greater correction for smaller values of Cd(t). Essentially

what Equation 5.6 does is to multiply the activity of a particular neuron by the

amount of correction necessary for too little distance between class centers of mass.

We assume that neuron activity is to blame for this problem. This may or may not

be the case; however, consistently assuming correlation between Cd(t) and neuron

activity should eventually impose this correlation on the liquid and ultimately yield

the desired results.

The solution to the second problem (too much variance within classes), is

implemented with Equation 5.8.

vi =

∑N
k=1 µi(Ok(t))ρ(Ok(t))

N
(5.8)

vi is calculated similarly to αi except that each instance of µi(Ok(t)) is multiplied by

the mean variance for class k, because mean variance is determined class by class.

The end result is that Equation 5.8 provides greater correction for larger values of

33

www.manaraa.com

Cv(t) which is desirable since we are trying to reduce intra-class variance. Like the

equation for di, the equation for vi assumes a correlation between the neuron’s activity

and Cv(t).

The function E(t) is derived from the Equations 5.5-5.8 as follows:

E(t) = Rs (vi − di) (5.9)

Here di is subtracted from vi because, as mentioned previously, we want the distance

correction, di, to strengthen weak synapses and weaken strong synapses while we want

the variance correction, vi to strengthen strong synapses and weaken weak synapses.

In other words, we want di to increase the chaotic nature of the liquid and vi to de-

crease the chaotic nature of the liquid. Ultimately the goal of Equation 5.9 is to find

a balance between a liquid that is too chaotic and one that is too stable [4]. Equa-

tion 5.10 shows Equation 5.9 fully expanded by substituting it with Equations 5.2,

5.3, and 5.5-5.8 to show the full process of evaluating E(t).

E(t)=Rs

∑N

k=1
µi(Ok(t))ρ(Ok(t))

N
−
(
∑N

k=1
µi(Ok(t)))

(
1−

∑N

m=1

∑N

n=1
‖µ(Om(t))−µ(On(t))‖2

N2Sep∗
Ψ

)
N

 (5.10)

We now turn our attention to F (t), the function of the firing behavior of all

neurons in the liquid at time t. The function is expressed in three parts as follows:

F (t) =


1

φ(t)
, if wij(t)E(t) ≥ 0

φ(t), if wij(t)E(t) < 0
(5.11)

φ(t) = 2kA(t)−b (5.12)

34

www.manaraa.com

A(t) =

∑
o∈O(t)

∑
η∈o

η

|o|

|O|
(5.13)

Here A(t) is the activity of the entire liquid at time t and is calculated by

finding the average fraction of neurons, η, that fire in each state vector in O(t). φ(t)

is a transformation of A(t) that reduces it to a function that will allow F (t) to work

as a simple multiplication of E(t) in Equation 5.4. φ(t) contains two variables, k and

b, that represent, respectively, the scale and offset of the transformation. For our

experiments, k = 6 and b = 3 were found, through preliminary experiments, to yield

the highest separation values. F (t) uses the state of the synapse and the results of

E(t) to determine how the global activity of the liquid at time t will effect the change

in weight. The effect of F (t) is to promote the overall strengthening of excitatory

synapses while promoting the overall weakening of inhibitory synapses if less than

half of the neurons in the liquid fire. If more than half of the neurons fire, the effect

of F (t) is reversed. The goal of F (t) is to direct the liquid to a “useful” amount

of activity. This assumes that half of the neurons firing for all state vectors is the

desired fraction of activity to achieve the maximum separation possible.

35

www.manaraa.com

36

www.manaraa.com

Chapter 6

Applying SDSM

Two artificial problems were developed to test the effect of Separation Driven

Synaptic Modification (SDSM), defined in Chapter 5, on the separation of a liquid

and ultimately the accuracy of a LSM. This chapter explores the results of these

experiments and shows the potential of this algorithm to select ideal liquids for LSMs.

Not only does SDSM select functional liquids for a given problem, but we show that

these liquids generalize to other problems.

6.1 Definition of Artificial Problems

The first problem is the simpler of the two, and we call it the frequency recog-

nition problem. This problem has four input neurons and five classes. Each input

neuron fires at a slow or fast frequency. The five classes are defined by specific com-

binations of fast and slow input neurons as shown Table 6.1, where 1 represents a fast

input neuron and 0 a slow one. These particular patterns were chosen to challenge

the liquid with a variety of combinations as well as the task of ignoring one channel

(input neuron 4).

Individual samples from each class are generated by following the above tem-

plate and then jittering the frequencies. Since each class is distinctly defined by a

particular pattern of behavior on a neuron-by-neuron basis, this is a fairly simple

problem. It does however test the liquid with multiple input neurons (channels of

37

www.manaraa.com

Input 1 Input 2 Input 3 Input 4
Class 1 1 0 0 0
Class 2 0 1 0 0
Class 3 1 1 0 0
Class 4 0 0 1 0
Class 5 1 0 1 0

Table 6.1: Frequency patterns for each class in the frequency recognition problem.
Each input represents one of four input neurons. A 1 indicates a fast spiking frequency
while a 0 represents a slower spiking frequency.

input), something that artificial problems mentioned earlier (Chapters 3 and 4) did

not do.

The second problem is more general and complex. We call it the pattern

recognition problem. This problem has eight input neurons and a variable number of

classes. Each class is based on a template spike pattern randomly created for each

input neuron. The random pattern is generated by plotting individual spikes with

a random distance between one another. This distance is drawn from the absolute

value of a normal distribution with a mean of 10ms and a standard deviation of 20ms.

Once the template pattern for each input neuron in a class is created, individual in-

stances from the class are created by jittering each spike in the template. The spikes

are jittered by an amount drawn from a zero-mean normal distribution with a stan-

dard deviation of 5ms making the problem particularly difficult. All of these values

were determined empirically to create a solvable but difficult problem. A simplified

example with only two classes and three input neurons is shown in Figure 6.1.

6.2 Parameter Settings

Extensive preliminary experiments dictated the choices for each of the many

parameters of the liquid used in both the frequency and pattern recognition prob-

lem. The different parameters we looked at were the number of neurons, connection

38

www.manaraa.com

(a) Template for Class A (b) Template for Class B

(c) Instance 1 for Class A (d) Instance 1 for Class B

(e) Instance 2 for Class A (f) Instance 2 for Class B

Figure 6.1: The templates for two classes, A and B, are shown in (a) and (b) respec-
tively. Each class has three input neurons designated by the y-axis. The x-axis is
time spanning 100ms. (c) and (e) show examples of instances from class A created
from jittered versions of the template. (d) and (f) shown examples of instances from
class B.

probability, the mean synaptic weight and delay, the standard deviation of the synap-

tic weight and delay, the number of samples per class used to determine separation

at each instance, the number of iterations to run, the learning rate, the decay time

constant, and the amount of noise present in each neuron. Table 6.2 shows the param-

eters we settled on for all of the results presented in this chapter as well as Chapters 7

and 8. As the results of this chapter and the next show, these parameters generalize

very well as long as the temporal scale of the input is on the order of one second.

Some of the parameters presented in Table 6.2 require further explanation.

The connection probability is the probability that any given neuron (including input

neurons) is connected to any other liquid neuron (liquid neurons cannot connect back

to input neurons). The value for the connection probability indicated in Table 6.2

39

www.manaraa.com

Neurons 64
Connection Probability 0.3
Synaptic Weight Mean 2 · 10−8

Synaptic Weight SD 4 · 10−8

Samples per Class 3
Training Iterations 500
λ 5 · 10−10

Inoise 5 · 10−8

τ 0.003
Synaptic Delay Mean 0.01
Synaptic Delay SD 0.1

Table 6.2: Parameters used by SDSM for Artificial and Phonetic problems.

means that each neuron is connected to roughly one third of the other neurons. The

“samples per class” parameter refers to the number of training samples used from

each class in the calculation of separation. This in turn is what drives the SDSM

algorithm. The more samples used, the more accurate the separation calculation will

be, but at the cost of speed. The number of iterations is simply how long to run the

SDSM algorithm. By 500 iterations, most liquids had reached a plateau in separation

improvement. λ is the learning rate first shown in Chapter 5. τ is the decay time

constant which refers to the rate at which the membrane potential of each synapse

decays. Inoise is the amount of noise produced by each neuron and is necessary for

an efficient liquid [13].

6.3 Empirical Results

Using the established parameters, we created LSMs with SDSM for both the

pattern and the frequency recognition problems (explained above). For the pattern

recognition problem we explored 4-, 8-, and 12-class problems. We only explored

the specifically defined 5-class scenario for the frequency recognition problem. For

each problem we ran fifty experiments each with a unique randomly generated ini-

tial liquid. State vectors obtained from both the initial liquid and the liquid after

40

www.manaraa.com

(a) Mean Accuracy (b) Mean Separation

Figure 6.2: A comparison of traditional liquids (initial) and those shaped by SDSM
(final) across four problems. Results are the mean accuracy (a) and separation (b) of
fifty LSMs.

five hundred iterations of SDSM were used as input to multiple perceptrons. Each

perceptron was trained to classify members of one particular class, so there were N

binary classifiers. The output of each perceptron was then compared, assigning the

class of the perceptron with the greatest confidence to the state vector in question.

This readout function was used because it is very simple, thus allowing us to more

carefully scrutinize the quality of the liquid. For all of our experiments, the test size

was one hundred samples per class.

Figure 6.2(a) shows the mean accuracy (over all fifty experiments) of the LSM

for each problem. Additionally Figure 6.3(a) shows the best accuracy obtained out

of the fifty experiments for each problem. In practice, the liquid with the maximum

accuracy is the one that we would select for future use. However, since we are inter-

ested in the potential of SDSM to enable the creation of a single liquid, we are also

interested in the mean accuracy. Keep in mind that the initial liquid is the typical

LSM scenario: a strictly randomly generated liquid. So both of these figures are a

comparison of standard LSMs to LSMs shaped with SDSM.

In addition to the accuracy of the LSMs, Figures 6.2 and 6.3 show the separa-

tion of the liquids. It should be noted that the liquid with the maximum separation

41

www.manaraa.com

(a) Maxiumum Accuracy (b) Maximum Separation

Figure 6.3: A comparison of traditional liquids (initial) and those shaped by SDSM
(final) across four problems. Results are the best accuracy (a) and separation (b)
obtained out of fifty LSMs.

is not necessarily the same liquid that accounts for the maximum accuracy. Overall

these results support the correlation between separation and accuracy, though there

is an anomaly in Figure 6.3(b) where a higher separation occurred in an initial ran-

dom liquid than in any SDSM shaped liquid. Such anomalies are bound to occur

occasionally due to the random nature of LSMs. The mean results in Figure 6.2(b)

confirm the abnormal nature of this event.

These results show a substantial increase in the performance of liquids

using SDSM, particularly in the problems with more classes. Traditional liquids may

see an improvement with different parameter settings, however these were the best

parameter settings for initial liquids that we found. The improvement with SDSM is

so substantial that it is unlikely that different liquid parameter settings would prove

a sufficient alternative.

Figure 6.4 compares the trends in liquid exploration for both traditional and

SDSM generated liquids. The results in this figure were obtained from the pattern

recognition problem with eight classes. Figure 6.4(a) shows the accuracy of the best

liquid obtained so far, given an increasing number of total liquids created (the mean

accuracy is also shown). The figure demonstrates how far fewer liquids are required

42

www.manaraa.com

(a) Accuracy Over 50 Liquid Creations (b) Accuracy Over 500 Liquid Creations

Figure 6.4: A comparison of accuracy trends in traditional liquids and those generated
with SDSM. These results show how the accuracy of the best liquid obtained so far
improves as more liquids are created. The results also show how the mean accuracy
stabilizes as more liquids are created. (a) shows the trend up to fifty liquid creations.
(b) shows the trend up to 500 liquid creations for traditional liquids only (the accuracy
for SDSM generated liquids is shown as a baseline only).

to obtained a satisfactory liquid using SDSM when compared with the traditional

method. Figure 6.4(b) extends the graph further for traditional liquid creation, and

compares the results to the best results obtained from SDSM after only fifty liquid

creations. We see from this figure that even after 500 liquid creations, a liquid has not

been created by the traditional means that can compete with SDSM after only eleven

liquid creations. This figure demonstrates that not only can SDSM find a suitable

liquid quicker than traditional methods, but it can also potentially create a liquid that

obtains higher accuracy than what is statistically possible with conventional LSMs.

Figure 6.5 shows how separation changes with each iteration over the history

of a typical SDSM trial. Figure 6.6 shows the mean value of separation over fifty trials

of SDSM. These results show that separation is clearly improving over time and that

the SDSM algorithm is doing what we want it to do. This in fact further strengthens

the idea that separation correlates with accuracy since the final result is a significant

improvement in accuracy. It is important to keep in mind that separation in both

of these figures was calculated using only three samples per class for each iteration

43

www.manaraa.com

Figure 6.5: The separation of a liquid at each iteration during training of SDSM. This
is a single representative example out of two hundred different liquids created in this
set of experiments. This particular liquid was created using the pattern recognition
problem with eight classes.

and is thus a very rough estimate. The initial and final separation values indicated

in Figures 6.2(b) and 6.3(b) are much more accurate approximations of separation

using one hundred samples per class.

Though the correlation between accuracy and separation is not perfect, it

is satisfactory as a metric for both evaluating the quality of a liquid and revealing

beneficial changes that can be made to a liquid. As the algorithm in Chapter 5

reveals, the relationship between separation and synaptic modification within the

SDSM algorithm is complicated and can’t necessarily be predicted. Some flaws of

the separation metric become apparent when studying Figure 6.3(b). While the

accuracy for the frequency recognition problem and the pattern recognition problems

are similar, the best liquid separation is distinctly higher in liquids created with the

frequency recognition problem. This demonstrates that different problems will yield

different separation values due to their unique properties. In this particular case the

disparity is probably at least partly a result of the differing number of input neurons

present in the different problems. The pattern recognition problems all have twice as

many input neurons as the frequency recognition problem. This characteristic of the

44

www.manaraa.com

(a) Frequency Recognition: 5 classes (b) Pattern Recognition: 4 classes

(c) Pattern Recognition: 8 classes (d) Pattern Recognition: 12 classes

Figure 6.6: The mean separation history using SDSM for the four problems explored
in this chapter. Each history is an average if fifty trials.

separation metric does not necessarily call for a change in the metric. It does mean

however, that separation values between different problems cannot be adequately

compared to one another.

6.4 SDSM Generalization on Artificial Problems

One of the potential strengths of LSMs is the ability of the liquid to generalize

across a variety problems. This is an important property since useful liquids can be

difficult to find. Because SDSM essentially uses training data to create the liquid,

there is a concern that the liquid’s ability to generalize may be compromised. In

order to test the generalizing capability of the SDSM generated liquids, we ran each

of the problems addressed in Figures 6.2 and 6.3 on every liquid used to generate

45

www.manaraa.com

(a) Mean Accuracy (b) Mean Separation

Figure 6.7: The performance of liquids created using SDSM with four different liquid
sources, across four different problems. The best traditional liquid is the best mean
result obtained from fifty liquids randomly generated for one of the four problems.
The figure shows the mean result of fifty unique liquids per data point.

those figures. The results are shown in Figures 6.7 and 6.8. When discussing the

problem used to create a specific liquid, we refer to the problem as the liquid source.

Input neurons are considered part of the liquid, thus their synapses are modi-

fied as part of SDSM. When a liquid is created from a source, it has I input neurons,

where I is the number of spike trains present in the source’s input. Because different

problems or sources have varying numbers of spike trains, discrepancies between the

number of spike trains and number of input neurons must be resolved.

When running a problem on a liquid that differs from the source, we use

the following approach. If the new problem’s input is encoded in fewer spike trains

than the source problem, then the spike trains are mapped arbitrarily to a subset

of the input neurons. The excess input neurons receive a null signal as input. If

the new problem’s input is encoded in more spike trains than the source problem,

then multiple spike trains get mapped arbitrarily to individual input neurons. The

spiking patterns are combined, increasing the total number of spikes firing in each

input neuron. For each experiment, the same arbitrary mapping is used for every

input to maintain consistency.

46

www.manaraa.com

(a) Max Accuracy (b) Max Separation

Figure 6.8: The performance of liquids created using SDSM with four different liquid
sources, across four different problems. The best traditional liquid is the best maxi-
mum result out of fifty liquids randomly generated for one of the four problems. The
figure shows the maximum result out of fifty unique liquids per data point.

The results shown in Figures 6.7 and 6.8 were obtained using two types of

problems. All of the pattern recognition problems use eight spike trains for each

instance while the frequency recognition problem only uses four spike trains (see

Section 6.1). When a pattern recognition problem is used as the source for the

frequency recognition problem, four of the input neurons have no signal. When the

frequency recognition problem is used as the source for a pattern recognition problem,

each input neuron combines the signals of two spike trains. Figures 6.9 and 6.10 show

the results of each problem on the initial liquid randomly generated for the indicated

problem. Since all of the pattern recognition problems have the same number of spike

trains, and since the initial liquids are untrained, the three data points showing the

results for these initial liquids are actually redundant. However, they are included for

completeness.

In addition to showing the results of each problem on the four liquid sources,

Figures 6.7 and Figures 6.8 also show the results of each problem on the best tradi-

tional liquid. The best traditional liquid is the best result obtained from Figures 6.9

47

www.manaraa.com

(a) Mean Accuracy (b) Mean Separation

Figure 6.9: The performance of randomly generated liquids created for the four dif-
ferent problems (referred to as the liquid source for convenience). The figure shows
the mean result of fifty unique liquids per data point.

and 6.10 respectively. The best results from the initial random liquids were used as

comparison to exemplify the generalizing ability of SDSM.

These results demonstrate the ability of liquids to generalize to different

problems. Figures 6.9 and 6.10 emphasize this by their distinct lack of variation in

behavior between liquids generated for frequency recognition and pattern recognition

problems. One would expect a difference in behavior between these two different liquid

states since liquids created for frequency recognition only have four input neurons

while liquids created for pattern recognition problems have eight. The fact that the

results show no significant difference indicates that the liquid is indeed acting as a

universal temporal filter.

SDSM essentially uses training data to create new liquids from those randomly

generated for Figures 6.7 and 6.8. Since the new liquids that are created depend upon

the problem used to train them, one would expect that the ability of the liquid to

generalize will be compromised. Interestingly, the results shown in Figures 6.7 and

Figures 6.8 clearly demonstrate that this is not the case. In fact, liquids not cre-

ated with the frequency recognition problem performed better on the problem than

liquids actually created with the frequency recognition problem. However, liquids cre-

48

www.manaraa.com

(a) Max Accuracy (b) Max Separation

Figure 6.10: The performance of randomly generated liquids created for the four
different problems (referred to as the liquid source for convenience). The figure shows
the maximum result out of fifty unique liquids per data point.

ated with pattern recognition problems did perform better on those problems than

liquids generated with the frequency recognition problem. In both cases, SDSM still

performed significantly better than traditional LSMs. The fact that liquids created

with pattern recognition performed better on both problems indicates that the prob-

lem used to create the liquid can make a difference. Looking at Figure 6.8(a) we

see that all liquids created with pattern recognition problems found liquids that per-

formed with over 90% accuracy on all of the problems. Pattern recognition is clearly

the more complicated of the two problems; and, by using SDSM with the more com-

plicated problem, the liquid may be primed for overall better performance. It should

be noted that both problem types are very similar in that classes are determined

by specific overall spiking patterns. Very distinct types of problems may not share

this performance correlation. Future research should explore diverse problem types

to more rigorously evaluate the ability of SDSM to generalize.

49

www.manaraa.com

50

www.manaraa.com

Chapter 7

A Comparison of SDSM, RLSMs, and HLSMs

Three new methods for creating liquids have been described in previous chap-

ters. In Chapter 3 we introduced Hebbian learning and referred to LSMs created

with Hebbian learning as HLSMs. We performed preliminary experiments with ran-

dom and speech data; however, we only looked at the effects of Hebbian learning

on separation. In Chapter 4 we introduced a special type of reinforcement learning

and referred to LSMs created with this learning method as RLSMs. We performed

experiments with only artificial data on very small liquids, but explored the effects of

reinforcement learning on both separation and accuracy. In Chapter 5 we introduced

Separation Driven Synaptic Modification (SDSM), which was inspired by RLSMs. In

Chapter 6 we explored the effects of SDSM on both separation and accuracy using a

variety of difficult artificial problems. In this chapter, using the same artificial prob-

lems outlined in Chapter 6, we will compare all three of these algorithms in terms of

separation and accuracy.

7.1 Parameter Settings

Up to this point, neither Hebbian nor reinforcement learning have been applied

to large scale problems to look at accuracy. Considering that both of these learning

methods are significantly slower than SDSM, after minimal preliminary experiments,

we maintained most of the parameter settings found in Table 6.2. The only difference

51

www.manaraa.com

(a) Mean Accuracy (b) Mean Separation

Figure 7.1: A comparison of traditional liquids (initial), HLSMs, RLSMs, and LSMs
created by SDSM. The comparison is across four problems. Results are the mean
accuracy (a) and separation (b) of fifty LSMs.

made to these settings was to change the learning rate, λ, from 5e−10 to 1e−9. The

additional parameter settings unique to the reinforcement learning were as follows:

the gain, γ, was set to 5; the discount factor for eligibility, β, was set to 0.99. The

parameter settings for the STDP (spike time dependant plasticity) synapses used in

Hebbian learning were the same as those used in Chapter 3.

7.2 Results

As in Chapter 6, fifty experiments were run for each algorithm for each of the

four problems. The mean results are shown in Figure 7.1, and the best results obtained

are shown in Figure 7.2. The results include initial liquids taken for comparison

against the traditional LSM. These initial liquids were a different set than those used

in Chapter 6 but were created under exactly the same conditions.

To be able to more fully compare how the different algorithms work, the mean

separation history for HLSMs (Figure 7.4) and RLSMs (Figure 7.6) have been in-

cluded. These can be compared to the separation history for SDSM in Figure 6.6.

Likewise, a specific representative example from each of the algorithms has been in-

52

www.manaraa.com

(a) Max Accuracy (b) Max Separation

Figure 7.2: A comparison of traditional liquids (initial), HLSMs, RLSMs, and LSMs
created by SDSM. The comparison is across four problems. Results are the best
accuracy (a) and separation (b) out of fifty LSMs.

Traditional HLSM RLSM SDSM
Frequency Recognition: 5 Classes 0.455 0.669 0.343 0.829
Pattern Recognition: 4 Classes 0.386 0.560 0.431 0.929
Pattern Recognition: 8 Classes 0.367 0.544 0.290 0.774
Pattern Recognition: 12 Classes 0.493 0.512 0.180 0.825

Table 7.1: The ratio of mean accuracy to maximum accuracy across four problems
for traditional LSMs, HLSMs, RLSMs, and LSMs using SDSM.

cluded: Figure 7.3 shows an example from a HLSM and Figure 7.5 shows an example

from a RLSM.

7.3 Discussion

From these results it is clear that SDSM is the best algorithm of those presented

for the problems explored in this study. Not only does it yield the overall best

liquid out of all of those created for every problem (Figure 7.2), but it also results

in the most consistently effective liquids as indicated by the mean accuracy ratings

(Figure 7.1). This last statistic is most telling since SDSM scores a mean accuracy

rating of nearly double any other method for every problem we explored. Another

way of analyzing the constancy of the algorithms is to look at the ratio of mean

53

www.manaraa.com

Figure 7.3: The separation of a liquid at each iteration during training of a Hebbian
LSM. This is a single representative example out of two hundred different liquids
created in this set of experiments. This particular liquid was created using the pattern
recognition problem with eight classes.

accuracy to maximum accuracy shown in Table 7.1. We see that SDSM shows the

highest mean to maximum accuracy ratio across all four problems, demonstrating

that most of the liquids produced behave close to the best liquid created. The reason

for SDSM’s success can be most likely tied to the fact that it focuses on making

specific changes to the liquid that will increase the liquid’s separation. These changes

are a function of individual components within the separation metric. Reinforcement

learning does use separation in it’s reward metric; however, the regulation provided

by the separation value in this case is only indirect. As for Hebbian learning, it is

unsupervised and doesn’t even use the separation metric. Once again, the validity of

separation as a means to quantify the effectiveness of a liquid is supported.

It is important to recall that for both the Hebbian and reinforcement learning

algorithms, parameter settings were only superficially explored for these experiments.

The primary reason for this was the extensive amount of time it takes to run these

algorithms coupled with the unsatisfactory results obtained in earlier experiments

(see Chapters 3 and 4). Finding the optimal settings for these algorithms given

a particular problem may very well yield better results. The fact that they both

54

www.manaraa.com

(a) Frequency Recognition: 5 classes (b) Pattern Recognition: 4 classes

(c) Pattern Recognition: 8 classes (d) Pattern Recognition: 12 classes

Figure 7.4: The mean separation history of HLSMs for four problems. Each history
is an average if fifty trials.

perform at least marginally better than traditional LSMs indicates potential for these

algorithms. Looking at Figures 7.4 and 7.6 also demonstrates that the algorithms are

generally performing in the direction that they should—an asymptotic increase in

separation. Of particular interest is the effect of Hebbian learning on the liquid.

HLSMs perform better than both RLSMs and traditional LSMs even though they

are based on unsupervised learning. This strengthens the validity of LSMs as a

biological model since Hebbian learning has been implicated as a learning mechanism

in the human nervous system [21]. Since there is potential for HLSMs and RLSMs

to accurately classify data, future work should explore the parameter space of these

algorithms for problems like pattern and frequency recognition.

55

www.manaraa.com

Figure 7.5: The separation of a liquid at each iteration during a training of a RLSM.
This is a single representative example out of two hundred different liquids created in
this set of experiments. This particular liquid was created using the pattern recogni-
tion problem with eight classes.

(a) Frequency Recognition: 5 classes (b) Pattern Recognition: 4 classes

(c) Pattern Recognition: 8 classes (d) Pattern Recognition: 12 classes

Figure 7.6: The mean separation history of RLSMs for four problems. Each history
is an average if fifty trials.

56

www.manaraa.com

Chapter 8

TIMIT Classification with SDSM

Liquids created with Separation Driven Synaptic Modification (SDSM) have

been shown to be significantly better than traditionally created liquids. Although

other methods of creating liquids have also shown improvements, the relative speed

of SDSM makes it a more desirable choice for further research. In this chapter we will

explore the use of SDSM in classifying phonemes found within the TIMIT dataset [7].

8.1 TIMIT

TIMIT consists of 6300 spoken sentences sampled at 16 kHz read by 630

people employing various English dialects. Since we are interested in identifying

context independent phonemes, each sentence was broken down into its individual

phonemes using phonetic indices included with the sound files. This resulted in

177389 training instances. Each of these phoneme WAV files was then converted into

its 13 Mel frequency cepstral coefficients (mfccs) [5] sampled at 200 MHz. Finally, the

mfccs were converted into thirteen spike trains (one for each mfcc) with a firing rate

calculated using Equation 8.1. This equation is comparable to the one in chapter 3

that was taken from [11].

Ratei(t) =
mfcci(t)− ωi

(Ωi − ωi)
·MaxRate (8.1)

57

www.manaraa.com

Here mfcci(t) is the ith mfcc value at time t which corresponds with the firing

rate for input neuron i; ωi is the minimum value of the ith mfcc, and Ωi is its maximum

value. MaxRate is the maximum rate of firing possible for a given input neuron.

MaxRate is a constant that, based on empirical results, we defined as 200 spikes

per second for all experiments in this chapter. Additionally, preliminary experiments

showed that in order for the liquid to achieve any appreciable level of separation, the

time span of the input needs to be on the order of one second due to the operating

timescale of the liquid. Since single phonemes have a length on the order of 50ms,

each of the spike trains was temporally stretched using Equation 8.2.

Tnew =
1

1 + e−k·Told
(8.2)

Here Told is the original length of a spike train while Tnew is the new stretched

length. The variable k is a sigmoid gain that we set to five, based on empirical results,

for all of the experiments shown in this chapter.

The TIMIT dataset contains roughly fifty two phonemes. Out of context,

correctly identifying all of these is a daunting task. Using six natural classes of

phonemes, we have reduced this problem to two simpler problems. The first is a

general problem that involves identifying phonemes as either consonants or vowels.

For this problem “stops”, “affricates”, and “fricatives” are considered consonants.

“Nasals” and “semivowels” are removed to avoid ambiguous sounds. The training

data consisted of 1000 instances of each class and the test data contained one hundred

instances of each class. The second problem is more specific and involves identifying

one of four distinct “vowel” phonemes. The phonemes used in this problem are ē as

in beet; ĕ as in bet; ŭ as in but; and the er sound in butter. For this problem, the

training data consisted of one hundred and fifty instances of each class while the test

data contained fifty instances.

58

www.manaraa.com

(a) Mean Accuracy (b) Mean Separation

Figure 8.1: A comparison of SDSM and traditional LSMs across two problems derived
from the TIMIT dataset. Results are the mean accuracy (a) and separation (b) of
fifty LSMs.

8.2 Results

The two problems outlined above were run on LSMs using SDSM, and tra-

ditional LSMs. The mean results can be found in Figure 8.1 and the best results

are in Figure 8.2. These results were obtained by running the problems on fifty liq-

uids either generated with SDSM or created randomly, with both the accuracy of the

LSMs as well as the separation of the liquids displayed. Keep in mind that the liq-

uids showing the best separation do not necessarily correspond to the LSMs with the

highest accuracy. The parameter settings used in these algorithms were the same as

those outlined in Chapter 6 with the exception of the number of training iterations.

In experiments with TIMIT, SDSM was only run for two hundred iterations since

liquids tended to reach a plateau in separation improvement by this point.

8.3 Discussion

Although the results of SDSM on TIMIT data are not as distinguished as the

results obtained with artificial template matching (Chapter 6), SDSM still shows a

significant improvement over traditional liquids. Based on Figure 8.1(a), on average

59

www.manaraa.com

(a) Max Accuracy (b) Max Separation

Figure 8.2: A comparison of SDSM and traditional LSMs across two problems derived
from the TIMIT dataset. Results are the best accuracy (a) and separation (b) out of
fifty LSMs.

traditional liquids do no better than guessing with either of the phoneme recognition

problems while LSMs using SDSM improve over this baseline. While neither of these

phoneme recognition problems are performed at an immediately applicable level, even

when only looking at the best liquids created with SDSM (Figure 8.2(a)), it should

be reiterated that these results are obtained by classifying individual phonemes com-

pletely out of context. Most of these sounds last one twentieth of a second and span a

diverse range of accents. Often speech recognition tasks involve classifying phonemes

as they are heard in a stream of data, thus providing context for each sound (i.e. pre-

ceding phonemes and pauses). We chose to perform only out of context experiments

in order to keep these problems parallel to the artificial ones in chapter 6 and to focus

on the separation properties of the liquid.

The improvement of SDSM LSMs over traditional LSMs is clear. Also, the fact

that the results from both of these real-data problems were obtained using essentially

the same parameters as those obtained from all five of the artificial-data problems

in Chapter 6, emphasizes another strength of the SDSM algorithm—a robustness

of algorithm parameters. Extensive parameter exploration of the liquids for these

problems did not show a marked improvement over the settings already obtained in

60

www.manaraa.com

Chapter 6. Parameter exploration on a problem by problem basis is a ubiquitous and

time consuming component of machine learning. While these results do not exclude

the possibility of the necessity for parameter exploration on other problems, they

show that there is a level of robustness here not common in machine learning.

For the consonants-versus-vowel problem, Figure 8.1(b) shows a large improve-

ment in mean separation from traditional liquids to those created with SDSM. This

demonstrates that SDSM has indeed performed as it is presumed to by improving

separation. The fact that accuracy also improves supports the correlation between

liquid separation and LSM accuracy. The fact that the magnitude of the improve-

ment in separation does not correlate with the magnitude of accuracy improvement

reveals an imperfection in the separation metric. This has also been noted in previous

chapters and illuminates one path for future research. Since SDSM is dependant on

the current separation metric, a new algorithm would need to be implemented after

any appreciable change to the metric. For this reason, we leave this area of research

to future studies.

61

www.manaraa.com

62

www.manaraa.com

Chapter 9

Conclusions and Future Work

The computational potential of recurrent spiking neural networks is evidenced

by living systems and has been established theoretically. Unfortunately, a satisfactory

method for exploiting that potential has yet to be discovered. For now, the liquid

state machine is a viable alternative. Somewhat haphazardly taking advantage of

this potential, it has shown a level of functionality on par with other contemporary

learning algorithms. The primary weakness with LSMs is the fact that success is

largely random and only achievable after numerous “guesses”. In this thesis we have

shown several methods that take some of this randomness out of the LSM creation

process. More importantly, these methods have shed light on potentially applicable

approaches for training recurrent SNNs and one of these methods has even exhibited

learning transfer, a difficult problem frequently investigated in current machine learn-

ing research. Finally, the success of these algorithms have strengthened the case for

LSMs in general.

Throughout this thesis we report on experiments comparing our new algo-

rithms with traditional LSMs. In all of these experiments we created relatively few

liquids, on the order of fifty liquids for each data point rather than the typical hun-

dreds of liquids. We did this in order to judge our new algorithms against a strict

criteria—can the LSMs perform well with limited attempts at liquid creation? If they

can, then we have successfully reduced randomness in the liquid creation process, one

of the goals of our research.

63

www.manaraa.com

Chapter 2 introduced a new metric for assessing the quality of a liquid without

needing to look at the accuracy of the resulting LSM. This metric is a variation of the

separation metric proposed by Goodman and has been empirically shown throughout

this thesis to correlate well with accuracy. Having this reliable estimate of liquid qual-

ity is essential for two of the algorithms we have presented. Although our separation

metric shows a strong correlation with accuracy, we have exposed several weaknesses

in the metric. Future research could look at applying alternative metrics to these

algorithms, such as statistical complexity [4]. Additionally, it would be interesting

to try incorporating clustering concepts into separation since there appears to be a

natural fit.

In Chapter 3 we introduced Hebbian learning to liquid state machines and

showed that Hebbian learning improves the separation property of liquids. While the

experiments of this chapter were preliminary in nature, they show that the idea of

modifying liquids for a given problem is promising. These experiments provided the

impetus for the rest of the research presented in this thesis and so were critical in that

respect. Later, in Chapter 7 we showed that HLSMs do indeed outperform traditional

LSMs when drawing from a pool of only fifty liquids. They surpass traditional LSMs

in terms of both accuracy and the separation property of liquids.

In Chapter 4 we described a reinforcement learning algorithm that could be

used in LSMs. The results in Chapter 7 show that while reinforcement learning

doesn’t perform on the same level as Hebbian learning or SDSM, RLSMs still yield

higher accuracy than traditional LSMs in all pattern recognition problems. Since

RLSMs are dependent on separation for the reward function, they could be improved

with a new separation metric. Future work that explores different separation metrics

could include implementing RLSMs with these metrics.

Separation driven synaptic modification (SDSM) was introduced and explored

in Chapters 5 and 6. SDSM shows encouraging results in improving the accuracy

64

www.manaraa.com

of LSMs as demonstrated by achieving mean accuracies of more than double those

of traditional LSMs for several different problems. Selecting the best liquid out of a

pool of only fifty liquids resulted in accuracies of over 90% whereas traditional liquids

performed as low as 34%. The fact that the mean accuracy of these SDSM augmented

LSMs was also high, indicates that SDSM is much more consistent than traditional

LSMs. Equally important, Chapter 6 shows that the generalization properties of

LSMs are maintained and possibly even improved by SDSM. This is particularly

interesting since what is happening here is effectively learning transfer. Future work

could confirm the extent of this learning transfer by exploring a greater variety of

problems.

Chapter 8 showed how SDSM fared when faced with a difficult speech recog-

nition problem. Even though the results were not satisfactory from an application

point of view, SDSM still performed significantly better than traditional LSMs. The

phoneme recognition problem presented in this chapter was particularly difficult due

to the lack of temporal context. It would be interesting to see how the algorithm

performs with context incorporated into the problem–for example, if the liquid was

presented with a stream of speech data rather than one phoneme at a time. The chal-

lenge we faced with phoneme recognition may also lie with our process of converting

mfccs into spike trains. Different methods of encoding input into spike trains would

be another useful area for future investigation.

The algorithms presented in this thesis are essentially training algorithms for

highly recurrent SNNs. Furthermore, some of these algorithms, SDSM in particular,

have been shown to be effective under non-trivial circumstances—a first in recurrent

SNN related machine learning. As most of the results in this thesis are empirical,

analytical verification (proof of convergence, etc.) would strengthen the results and

provide deeper insights into the LSM model. The function of LSMs in general can be

compared to SVMs (support vector machines) with the liquid effectively playing the

65

www.manaraa.com

role of the kernel. Finding a SVM that corresponds to SDSM (or HLSMs, or RLSMs)

would make it possible to mathematically explain the behavior of the algorithms

presented in this thesis, and thus understand analytically their underlying mechanics.

This in turn would supply a means of better understanding recurrent SNNs and

provide valuable insights into machine learning in general.

66

www.manaraa.com

Appendix A

Comparison of Liquid Creation Methods

These are the results used to obtain the Figures in Chapters 6.3 and 7. The

results are all either the mean result of fifty liquids or the maximum result obtained

out of fifty liquids.

67

www.manaraa.com

Traditional HLSM RLSM SDSM
Frequency Recognition: 5 Classes 0.346 0.5355 0.2576 0.7822
Pattern Recognition: 4 Classes 0.3242 0.4932 0.405 0.9197
Pattern Recognition: 8 Classes 0.1687 0.3402 0.1712 0.759
Pattern Recognition: 12 Classes 0.1003 0.3393 0.1324 0.7562

Table A.1: Mean Accuracy

Traditional HLSM RLSM SDSM
Frequency Recognition: 5 Classes 0.4288 0.4764 0.1796 0.5557
Pattern Recognition: 4 Classes 0.1144 0.295 0.1851 0.4361
Pattern Recognition: 8 Classes 0.126 0.3493 0.118 0.4548
Pattern Recognition: 12 Classes 0.1137 0.4403 0.1303 0.4867

Table A.2: Mean Separation

Traditional HLSM RLSM SDSM
Frequency Recognition: 5 Classes 0.76 0.8 0.752 0.944
Pattern Recognition: 4 Classes 0.84 0.88 0.94 0.99
Pattern Recognition: 8 Classes 0.46 0.625 0.59 0.98
Pattern Recognition: 12 Classes 0.2033 0.6633 0.7367 0.9167

Table A.3: Max Accuracy

Traditional HLSM RLSM SDSM
Frequency Recognition: 5 Classes 1.267 0.9048 0.9611 1.215
Pattern Recognition: 4 Classes 0.4352 0.6127 0.533 0.5098
Pattern Recognition: 8 Classes 0.4261 0.5907 0.4143 0.5771
Pattern Recognition: 12 Classes 0.3625 0.7135 0.5272 0.579

Table A.4: Max Separation

68

www.manaraa.com

Appendix B

Generalization of Liquids

These are the results used to obtain the Figures in Chapter 6.4. The “SDSM”

results refer to the results using SDSM while “traditional” results refer to traditional

LSMs. The labels for the columns are as follows: “FR5” is the Frequency Recognition

problem with 5 Classes, “PR4” is the Pattern Recognition problem with 4 Classes,

“PR8” is the Pattern Recognition problem with 8 Classes, and “PR12” is the Pattern

Recognition problem with 12 Classes.

69

www.manaraa.com

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 0.7822 0.7908 0.6237 0.5615
Pattern Recognition: 4 Classes 0.8994 0.9197 0.8145 0.7627
Pattern Recognition: 8 Classes 0.8945 0.8959 0.759 0.7007
Pattern Recognition: 12 Classes 0.8886 0.91 0.7984 0.7562

Table B.1: Mean SDSM Accuracy

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 0.5557 0.3571 0.391 0.4329
Pattern Recognition: 4 Classes 0.7175 0.4361 0.4634 0.4905
Pattern Recognition: 8 Classes 0.7127 0.4362 0.4548 0.4773
Pattern Recognition: 12 Classes 0.6916 0.4284 0.4566 0.4867

Table B.2: Mean SDSM Separation

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 0.944 0.94 0.87 0.8233
Pattern Recognition: 4 Classes 0.984 0.99 0.95 0.91
Pattern Recognition: 8 Classes 0.976 1 0.98 0.9333
Pattern Recognition: 12 Classes 0.976 1 0.945 0.9167

Table B.3: Max SDSM Accuracy

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 1.215 0.453 0.5148 0.5631
Pattern Recognition: 4 Classes 1.024 0.5098 0.5275 0.5981
Pattern Recognition: 8 Classes 0.8971 0.5472 0.5771 0.6364
Pattern Recognition: 12 Classes 0.8825 0.5369 0.5603 0.579

Table B.4: Max SDSM Separation

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 0.3628 0.3071 0.1578 0.1085
Pattern Recognition: 4 Classes 0.3629 0.3369 0.1688 0.1084
Pattern Recognition: 8 Classes 0.3388 0.3067 0.1635 0.1051
Pattern Recognition: 12 Classes 0.3778 0.3207 0.1547 0.1061

Table B.5: Mean traditional Accuracy

70

www.manaraa.com

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 0.3998 0.09354 0.09876 0.1197
Pattern Recognition: 4 Classes 0.3975 0.1303 0.1279 0.1301
Pattern Recognition: 8 Classes 0.357 0.1033 0.1109 0.1248
Pattern Recognition: 12 Classes 0.4523 0.1153 0.1039 0.1152

Table B.6: Mean traditional Separation

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 0.752 0.67 0.39 0.26
Pattern Recognition: 4 Classes 0.76 0.65 0.425 0.2667
Pattern Recognition: 8 Classes 0.704 0.68 0.37 0.2567
Pattern Recognition: 12 Classes 0.736 0.58 0.37 0.34

Table B.7: Max traditional Accuracy

FR5 PR4 PR8 PR12
Frequency Recognition: 5 Classes 1.65 0.3326 0.3474 0.3852
Pattern Recognition: 4 Classes 1.236 0.3855 0.4504 0.3293
Pattern Recognition: 8 Classes 1.062 0.3428 0.3702 0.3801
Pattern Recognition: 12 Classes 1.483 0.4154 0.4049 0.4032

Table B.8: Max traditional Separation

71

www.manaraa.com

72

www.manaraa.com

Appendix C

TIMIT Results with SDSM

These are the results used to obtain the Figures in Chapter 8. The “SDSM”

results refer to the results using SDSM while “traditional” results refer to traditional

LSMs.

73

www.manaraa.com

traditional SDSM
Consonants vs. Vowels: 2 Classes 0.5097 0.5941
Four Vowels: 4 Classes 0.2676 0.3869

Table C.1: Mean Accuracy

traditional SDSM
Consonants vs. Vowels: 2 Classes 0.02137 0.0605
Four Vowels: 4 Classes 0.0439 0.1212

Table C.2: Mean Separation

traditional SDSM
Consonants vs. Vowels: 2 Classes 0.7 0.75
Four Vowels: 4 Classes 0.37 0.495

Table C.3: Max Accuracy

traditional SDSM
Consonants vs. Vowels: 2 Classes 0.07904 0.1039
Four Vowels: 4 Classes 0.09629 0.1586

Table C.4: Max Separation

74

www.manaraa.com

Bibliography

[1] S. M. Bohte, “Spiking neural networks,” Ph.D. dissertation, Centre for Mathe-

matics and Computer Science, 2003.

[2] S. M. Bohte, J. N. Kok, and H. L. Poutré, “Error-backpropagation in temporally

encoded networks of spiking neurons,” Neurocomputing, vol. 48, pp. 17–37, 2001.

[3] O. Booij and H. T. Nguyen, “A gradient descent rule for spiking neurons emitting

multiple spikes,” Information Processing Letters, vol. 95, pp. 552–558, 2005.

[4] N. Brodu, “Quantifying the effect of learning on recurrent spiking neurons,”

Proceedings of the International Joint Conference on Neural Networks, pp. 512–

517, 2007.

[5] ETSI ES 202 212STQ: DSR, “Extended advanced front-end feature extraction

algorithm; compression algorithms; back-end speech reconstruction algorithm,”

European Telecommunications Standards Institute (ETSI), Tech. Rep., 2003.

[6] R. V. Florian, “A reinforcement learning algorithm for spiking neural networks,”

Proceedings of the Seventh International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, pp. 299–306, 2005.

[7] J. S. Garofolo et al., “Timit acoustic-phonetic continuous speech corpus,”

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1,

1993, linguistic Data Consortium, Philadelphia.

[8] W. Gerstner and W. Kistler, Eds., Spiking Neuron Models. New York: Cam-

bridge University Press, 2002.

[9] E. Goodman and D. Ventura, “Effectively using recurrently connected spiking

neural networks,” Proceedings of the International Joint Conference on Neural

Networks, vol. 3, pp. 1542–1547, 2005.

[10] ——, “Time invariance and liquid state machines,” Proceedings of the Joint

Conference on Information Sciences, pp. 420–423, 2005.

75

www.manaraa.com

[11] ——, “Spatiotemporal pattern recognition via liquid state machines,” Proceed-

ings of the International Joint Conference on Neural Networks, pp. 3848–3853,

2006.

[12] H. Jaeger, “A tutorial on training recurrent neural networks, covering bppt, rtrl,

ekf and the “echo state network” approach,” International University Bremen,

Tech. Rep., 2005.

[13] K. Jim, C. L. Giles, and B. G. Horne, “An analysis of noise in recurrent neu-

ral networks: Convergence and generalization,” IEEE Transactions on Neural

Networks, vol. 7, pp. 1424–1438, 1996.

[14] R. G. Leonard and G. Doddington, “Tidigits speech corpus,”

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S10,

1993, linguistic Data Consortium, Philadelphia.

[15] W. Maass, “Networks of spiking neurons: the third generation of neural network

models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[16] ——, “Real-time computing without stable states: A new framework for neural

computations based on perturbations,” Neural Computation, vol. 14, no. 11, pp.

2531–2560, 2002.

[17] W. Mass, “Networks of spiking neurons: the third generation of neural network

models,” Transactions of the Society for Computer Simulation International,

vol. 14, pp. 1659–1671, 1997.

[18] T. Natschläger, “Neural micro circuits,” http:/www.lsm.turgraz.at/index.html,

2005.

[19] T. Natschläger, W. Maass, and H. Markram, “The “liquid” computer: A novel

strategy for real-time computing on time series,” Special Issue on Foundations

of Information Processing of TELEMATIK, vol. 8, no. 1, pp. 39–43, 2002.

[20] D. Norton and D. Ventura, “Preparing more effective liquid state machines using

Hebbian learning,” Proceedings of the International Joint Conference on Neural

Networks, pp. 4243–4248, 2006.

[21] O. Paulsen and T. J. Sejnowski, “Natural patterns of activity and long-term

synaptic plasticity,” Current Opinion in Neurobiology, vol. 10, pp. 172–179, 2000.

76

www.manaraa.com

[22] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An experimen-

tal unification of reservoir computing methods,” Neural Networks, vol. 20, pp.

391–403, 2007.

[23] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Adapting reservoirs to get

Gaussian distributions,” European Symposium on Artificial Neural Networks, pp.

495–500, 2007.

[24] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. V. Campenhout, “Isolated

word recognition with liquid state machine: a case study,” Information Process-

ing Letters, vol. 95, pp. 521–528, 2005.

77

	Improving Liquid State Machines Through Iterative Refinement of the Reservoir
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Committee Approval Page
	Acceptance Page
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Neural Networks
	Liquid State Machines
	Thesis Description
	Thesis Overview

	Separation
	An Improved Separation Metric
	A Time-dependent Version of Separation
	Validation of Separation Metric

	Hebbian Learning
	Pathological Synchrony and Over-Stratification
	Effects of Random Input on Separation
	Methods
	Results
	Discussion

	Effects of Spoken Digit Input on Separation
	Methods
	Results
	Discussion

	Reinforcement Learning
	Algorithm
	Results
	Discussion

	Separation Driven Synaptic Modification
	Applying SDSM
	Definition of Artificial Problems
	Parameter Settings
	Empirical Results
	SDSM Generalization on Artificial Problems

	A Comparison of SDSM, RLSMs, and HLSMs
	Parameter Settings
	Results
	Discussion

	TIMIT Classification with SDSM
	TIMIT
	Results
	Discussion

	Conclusions and Future Work
	Appendix A: Comparison of Liquid Creation Methods
	Appendix B: Generalization of Liquids
	Appendix C: TIMIT Results with SDSM
	Bibliography

